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I have included an additional example (slides 14 and 15) 

and an answer to a FAQ about multiple EROS in slide 16.



Definition.

Let A be an mn matrix over 𝕂. Row rank of A is the

dimension of the subspace of 𝕂𝑛 spanned by rows of A.

Column rank of A is the dimension of the subspace of

𝕂𝑚 spanned by the columns of A.

Theorem.

For every matrix A the row rank of A is equal to its column rank.

For every matrix A rank of A or r(A) denotes both, the row rank 
and the column rank of A



Theorem. 

If A is row equivalent to B (i.e. A can be row-reduced to B) then

r(A) = r(B)

Proof. It is enough to prove EROS (Elementary Row OperationS) 
do not affect the space spanned by rows, so they also do not affect 
the dimension of the space. It is trivial for interchanging and 
scaling of rows, i.e. EROS 1 and 2.

Comprehension (1 bonus point).

Prove that EROS (ri ri+crj) does not affect the dimension of the 
vector space spanned by rows. In other words, prove

dim( span (r1,r2, …, ri, …,  rm) ) = dim( span (r1,r2, …, ri+crj, …,  rm) )



Theorem.

The rank of a matrix A is equal to the number of nonzero rows in 
any row-echelon matrix B which is row-equivalent to A. 

Proof.

It follows from the last theorem and the fact that rows of a row-
echelon matrix are linearly independent.

Remark. The theorem can be used as a tool for checking linear 
independence of a set of vectors. Form a matrix with the vectors 
serving as rows and calculate its rank. If the rank matches the 
number of the vectors, the set is linearly independent.



SYSTEMS OF LINEAR EQUATIONS

A system of linear equations

(∗)

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + … + 𝑎1,𝑛𝑥𝑛 = 𝑏1
𝑎2,1𝑥1 + 𝑎2,2𝑥2 + … + 𝑎2,𝑛𝑥𝑛 = 𝑏2

. . .
𝑎𝑚,1𝑥1 + 𝑎𝑚,2𝑥2 + …+ 𝑎𝑚,𝑛𝑥𝑛 = 𝑏𝑚

can be represented as a single matrix equation AX=B, where A = [ai,j], 

𝑋 =

𝑥1
⋮
𝑥𝑛

and 𝐵 =
𝑏1
⋮
𝑏𝑚

. X and B are single-column matrices.



The system of linear equations (∗) can also be represented as a 
vector equation

𝑥1

𝑎1,1
𝑎2,1
⋮

𝑎𝑚,1

+ 𝑥2

𝑎1,2
𝑎2,2
⋮

𝑎𝑚,2

+ … +𝑥𝑛

𝑎1,𝑛
𝑎2,𝑛
⋮

𝑎𝑚,𝑛

= 

𝑏1
𝑏2
⋮
𝑏𝑚

We are trying to express B as a linear combination of columns of 
the coefficient matrix A. This can only be done if 

span{C1, C2, …, Cn} = span{C1, C2, …, Cn, B}. 

The matrix with columns C1, C2, …, Cn and B is called the 
augmented matrix of the system of equations and is denoted by 
[A|B].

C1 C2 Cn B



Theorem. (Kronecker, Capelli)

A system AX = B of linear equations has a solution iff 

r(A) = r([A|B]).

Proof. The vector-oriented approach form the previous slide is 
proof enough.

Remark.

Interchanging equations, multiplying both sides by a non-zero 
number and adding equations one to another do not affect the set 
of solutions of a system of equations. EROS are exactly these 
operations except that they are performed on rows of a matrix 
rather than on equations. This suggests a strategy for solving a 
system of equations. Start with a system (∗), represent it as its 
augmented matrix [A|B], row-reduce the matrix to a row echelon 
matrix [E|C], translate the matrix to the language of equations.

Now move to slide 11 of the other presentation to see an example.



Definition.
A row echelon matrix is called row canonical iff the leading 
nonzero entry in each nonzero row is equal to 1 and is the only 
nonzero entry in its column.

Fact. Every matrix can be row reduced to a row canonical one.

Fact. If we row reduce [A,B] to a row canonical matrix rather 
than to a row echelon one we are given the solutions on a plate.



Example. Consider the reduced system from last example

ቐ
2x + 4y − z = 11

5y + z = 2

3z = − 9

Its augmented matrix is 
2 4 −1 11
0 5 1 2
0 0 3 −9

.

Doing 
1

3
r3 and then r1+r3 and r2-r3 we get 

2 4 0 8
0 5 0 5
0 0 1 −3

. Then

doing 
1

5
r2 and 

1

2
r1 we get 

1 2 0 4
0 1 0 1
0 0 1 −3

. Finally, by r1-2r2 we get 

1 0 0 2
0 1 0 1
0 0 1 −3

which in the language of equations means

ቐ
x = 2

y = 1

z = − 3



Definition.

A system of linear equations AX=B is called homogeneous iff B=.

Fact.

Every homogeneous system of linear equations has a solution, 
namely 𝑥1= 0, 𝑥2 = 0, … , 𝑥𝑛 = 0. Any other solution (if

there is one) is called a non-trivial or non-zero solution.



Theorem.

Let AX= be a homogeneous system of m linear equations with n
unknowns. Then the set W = {v∈ 𝕂𝑛 | Av = } of all solutions of 
the system is a subspace of the vector space 𝕂𝑛. Moreover,

dim(W) = n − r (A).

Proof. (of the first statement)

Take u,v ∈ W. This means that Au =  and Av = . Since matrix 
multiplication is distributive over addition we have A(u+v) = 
Au+Av =  +  = , i.e. u+v ∈ W.

Similarly, we prove that for every k ∈ 𝕂 we have A(ku) = k(Au) = 

k = .

We skip the proof of the second statement.



Example.

ቐ

x + y − z = 0

2x − 3y + z = 0

x − 4y + 2z = 0

A = 
1 1 −1
2 −3 1
1 −4 2

~ r2-2r1, r3-r1 ~

1 1 −1
0 −5 3
0 −5 3

~ r3-r2 ~ 
1 1 −1
0 −5 3
0 0 0

. The rank of the last matrix 

is, clearly, 2. Hence the dimension of the solution space is 3 – 2 = 1. 

We shall find a basis for the space reducing the matrix further. 

1 1 −1
0 −5 3
0 0 0

~ 
1

−5
𝑟2 ~ 

1 1 −1

0 1
−3

5

0 0 0

~ r1-r2 ~ 

1 0
2

5

0 1
−3

5

0 0 0

. 

In the language of equations this reads



x +
2

5
z = 0

y −
3

5
z = 0

0z = 0

. The bottom equation really says "z may be 

anything you like" and the top two say x = −
2

5
z and y =

3

5
z. Hence 

every vector (x,y,z) belonging to the solution space looks like 

(−
2

5
z, 

3

5
z, z) = z(−

2

5
, 
3

5
, 1) and the set {(−

2

5
, 
3

5
, 1)} is a one-element 

basis for the space.



Example.

𝑥 + 𝑎𝑦 + 𝑎𝑧 = 1
𝑎𝑥 + 𝑎𝑦 + 𝑧 = 1
𝑎𝑥 + 𝑦 + 𝑎𝑧 = 1
𝑎𝑥 + 𝑎𝑦 + 𝑎𝑧 = 1

Discuss solvability of the system in terms of a.

൦ ൪

1 𝑎 𝑎 1
𝑎 𝑎 1 1
𝑎 1 𝑎 1
𝑎 𝑎 𝑎 1

~ 

𝑟2 − 𝑎𝑟1
𝑟3 − 𝑎𝑟1
𝑟4 − 𝑎𝑟1

~ ൦ ൪

1 𝑎 𝑎 1
0 𝑎 − 𝑎2 1 − 𝑎2 1 − 𝑎
0 1 − 𝑎2 𝑎 − 𝑎2 1 − 𝑎
0 𝑎 − 𝑎2 𝑎 − 𝑎2 1 − 𝑎

. Since for 

a=1 everything outside the top row becomes equal to zero it looks like a 

good idea co split cases.

Case 1, a=1. We get ൦ ൪

1 𝑎 𝑎 1
0 𝑎 − 𝑎2 1 − 𝑎2 1 − 𝑎
0 1 − 𝑎2 𝑎 − 𝑎2 1 − 𝑎
0 𝑎 − 𝑎2 𝑎 − 𝑎2 1 − 𝑎

= ൦ ൪

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

In this case r(A) = a(A|B) = 1. This means the system is solvable. It is 
reduced to 𝑥 + 𝑦 + 𝑧 = 1, hence 𝑥 = 1 − 𝑦 − 𝑧, y and z are free.



Case 2, a1. 

൦ ൪

1 𝑎 𝑎 1
0 𝑎 − 𝑎2 1 − 𝑎2 1 − 𝑎
0 1 − 𝑎2 𝑎 − 𝑎2 1 − 𝑎
0 𝑎 − 𝑎2 𝑎 − 𝑎2 1 − 𝑎

~ 𝑑𝑖𝑣𝑖𝑑𝑒 𝑟𝑜𝑤𝑠 2,3, 𝑎𝑛𝑑 4 𝑏𝑦(1 − 𝑎)~

൦ ൪

1 𝑎 𝑎 1
0 𝑎 1 + 𝑎 1
0 1 + 𝑎 𝑎 1
0 𝑎 𝑎 1

~subtract row 4 from other rows~

൦ ൪

1 0 0 0
0 0 1 0
0 1 0 0
0 𝑎 𝑎 1

~r2 r3~ ൦ ൪

1 0 0 0
0 1 0 0
0 0 1 0
0 𝑎 𝑎 1

~r4− ar2−ar3~ ൦ ൪

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

r(A) = 3, r(A|B) = 4. The system is inconsistent.



FAQ.

Can we do several EROS in one step?

It depends. A common mistake is to do something like r1-r2 and r3-r1 

in one go. What is wrong with this? Row r1 has been modified in the 
first operation which means in the second one you should use the 
modified r1. In extremal cases people are able to row-reduce any 
matrix to all zeros, like this:

𝑎 𝑏
𝑐 𝑑

~ r1-r2 , r2-r1 ~ 
𝑎 − 𝑐 𝑏 − 𝑑
𝑐 − 𝑎 𝑑 − 𝑏

~ r1+r2 , r2+r1 ~ 
0 0
0 0

In short, when in doubt do it one EROS at a time.



Theorem.

Let AX = B be an arbitrary system of linear equations. Let U be the 
solution set and let 𝑣0 ∈ U be any single solution to the system.

Then U = 𝑣0 +W = {𝑣0 + w | w ∈ W}, where W is the solution space 
of the corresponding homogeneous system AX = .

Proof.

Each vector w from 𝑣0+W is a solution to AX = B. Indeed,

A(𝑣0 + w) = A𝑣0 + Aw = B +  = B.

Moreover, if, for some 𝑣, Av = B we can denote t = 𝑣 − 𝑣0. 

We see that 𝑣 = 𝑣0+t and At = A(𝑣 − 𝑣0) = A𝑣 −A𝑣0 = B−B = .



Illustration.

(1) {−x+y = 1  (a system of equation, one equation two unknowns)

(2) {−x+y = 0  (the corresponding homogeneous system)

v0 some solution of (1) v0


